
AppSecAI Expert Triage Automation

Assessment of SAST Findings

Company: This is a test

Customer: Paul Smith

Report Date: January 23, 2025

AppSecAI, Inc. Confidential

Executive Summary

Static Application Security Testing (SAST) tools are integral to identifying vulnerabilities. But SAST "run"
results must be manually triaged to remove false positives, a slow and expensive process that impedes
application security, development and delivery. AppSecAI Expert Triage Automation (ETA) automates
triage to lower manual triage time, tedium, and costs.

This report details the results from a single SARIF file called OWASP_Benchmark.SARIF.

2,690
Total Vulnerabilities

1,587
True Positives

1,103
False Positives

41.0%
False Positive Rate

Total Cost Savings: $50,973

Manual Process: $66,238

ETA Process: $15,265

Total Hours Saved: 340

Manual Process: 442 hrs

ETA Process: 102 hrs

Total Company Savings (15 Repos)

$ Savings: $764,588

Hours Saved: 5,097 hrs

Key Findings Analysis: This security assessment revealed 2,690 potential vulnerabilities, with 59.0%
confirmed as true positives requiring remediation. The implementation of AppSecAI ETA demonstrated
significant efficiency gains, reducing manual triage and documentation time by 77% while maintaining
high accuracy. When scaled across 15 repositories, this automation yields potential annual savings of
$764,588 and 5,097 labor hours, enabling faster security assessments and more efficient resource
allocation.

2

Detailed Analysis

SAST Test File: OWASP_Benchmark.SARIF

Code Base: https://github.com/OWASP-

Benchmark/BenchmarkJava.git

SAST Tool: SemGrep

Triage System: AppSecAI ETA 0.9

Analysis Time: 30 minutes

Total Vulnerabilities: 2,690

False Positives: 1,103

True Positives: 1,587

False Positive Rate: 41.0%

True Positive Rate: 59.0%

Vulnerability Type Distribution

3

Vulnerability Distribution Overview

Key Findings Analysis: The vulnerability assessment identified Weak Random Number and SQL
Injection as the predominant security concerns, collectively representing a significant portion of all
detected issues. Critical analysis of the distribution reveals that 53.4% of vulnerabilities are
concentrated in just three categories (Weak Random Number, SQL Injection, Cross-Site Scripting),
providing a clear prioritization framework for remediation efforts. This concentration pattern suggests
that a targeted security hardening approach, focusing on these primary vulnerability types, would yield
the highest security posture improvement with optimal resource utilization.

4

Financial Analysis and Cost Comparison

Cost Rates

Developer Cost: $200/hour

AppSec Analyst Cost: $150/hour

Time Metrics

Manual Triage: 1 min/vuln

Documentation: 15 min/vuln

ETA Triage: 0.5 min/vuln

Cost Metrics (Per Vulnerability)

Manual Triage: $2.50

Documentation: $37.50

ETA Triage: $1.25

Fix Cost: $400.00

Process Cost Comparison - Total Savings: $50,972.5 (77.0%)

5

Labor Cost Analysis

Key Findings Analysis: Implementation of AppSecAI ETA demonstrates substantial labor efficiency
gains across all security assessment processes. Total labor hours were reduced by 340 hours (77.0%),
with particularly significant improvements in triage activities (22 hours saved, 50.0% reduction) and
documentation tasks (317 hours saved, 80.0% reduction). This dramatic decrease in manual effort
enables security teams to process vulnerability assessments 4x faster while maintaining high
accuracy, significantly accelerating the security review cycle.

6

Appendix: Glossary of Terms

This glossary provides definitions for key terms used throughout the report to ensure clear
understanding of security concepts, processes, and technologies discussed.

Application Security (AppSec)

The practice of protecting applications from security threats and vulnerabilities
throughout the software development lifecycle, including development and test.

AppSecAI ETA (Expert Triage Automation)

An AI-powered solution that automates and accelerates vulnerability triage by removing
false positives and documenting true positives.

False Positive

A reported security vulnerability that is determined to be incorrect or non-exploitable.

True Positive

A correctly identified security vulnerability that requires remediation.

Static Application Security Testing (SAST)

A well established security testing methodology that analyzes source code or compiled
binaries to identify vulnerabilities without executing the application. Typical SAST tool
results will contain false positives which need to be removed.

Triage

The process of reviewing, categorizing, and prioritizing security findings to determine their
validity and impact.

SARIF (Static Analysis Results Interchange Format)

A standardized format for reporting the results of static analysis tools.

Remediation

The process of fixing identified security vulnerabilities to eliminate risks.

Triage and Fix Automation

The use of AI and machine learning to streamline security processes, reducing manual
effort and cost.

Security Posture

The overall security status of an organization's applications and infrastructure based on
risk assessments and mitigation strategies.

7

Technical Vulnerability Analysis

Data Analysis Summary:
Based on analysis of 2,690 vulnerability records, several significant patterns emerge: 1. Language
Distribution: None is the predominant language (100.0% of vulnerabilities). 2. Top Categories:
weakrand: 512 (19.0%); sqli: 465 (17.3%); xss: 460 (17.1%) 3. CWE Types: CWE-330: 512; CWE-89: 465; CWE-
79: 460 4. Data Flow: Sources: RequestGetHeaders.code, RequestGetParameterValues.code,
RequestGetQueryString.code; Sinks: SecureRandomNextDouble2.code, MessageDigestGetInstance-S-
P2.code, RandomNextInt.code 5. Risk: 79.9% of vulnerabilities involve confirmed vulnerable sinks.

Language Distribution

Language Count %

None 2,690 100.0

Top Categories

Category Count %

weakrand 512 19.0

sqli 465 17.3

xss 460 17.1

pathtraver 291 10.8

hash 244 9.1

Top Sources

Source Count %

RequestGetHeaders.code 295 11.0

RequestGetParameterValues.code 282 10.5

RequestGetQueryString.code 279 10.4

RequestGetParameterMap.code 264 9.8

RequestGetParameterNames.code 252 9.4

Top Sinks

Sink Count %

SecureRandomNextDouble2.code 38 1.4

MessageDigestGetInstance-S-P2.code 35 1.3

RandomNextInt.code 34 1.3

SessionSetAttribute-S-O^.code 34 1.3

SecureRandomNextLong.code 34 1.3

8

